sitemap
Наш сайт использует cookies. Продолжая просмотр, вы даёте согласие на обработку персональных данных и соглашаетесь с нашей Политикой Конфиденциальности
Согласен
Поиск:

Вход
Архив журнала
Журналы
Медиаданные
Редакционная политика
Реклама
Авторам
Контакты
TS_pub
technospheramag
technospheramag
ТЕХНОСФЕРА_РИЦ
© 2001-2025
РИЦ Техносфера
Все права защищены
Тел. +7 (495) 234-0110
Оферта

Яндекс.Метрика
R&W
 
 
Вход:

Ваш e-mail:
Пароль:
 
Регистрация
Забыли пароль?
Книги по фотонике
Урик Винсент Дж.-мл., МакКинни Джейсон Д., Вилльямс Кейт Дж.
Другие серии книг:
Мир фотоники
Библиотека Института стратегий развития
Мир квантовых технологий
Мир математики
Мир физики и техники
Мир биологии и медицины
Мир химии
Мир наук о Земле
Мир материалов и технологий
Мир электроники
Мир программирования
Мир связи
Мир строительства
Мир цифровой обработки
Мир экономики
Мир дизайна
Мир увлечений
Мир робототехники и мехатроники
Для кофейников
Мир радиоэлектроники
Библиотечка «КВАНТ»
Умный дом
Мировые бренды
Вне серий
Библиотека климатехника
Мир транспорта
Мир станкостроения
Мир метрологии
Мир энергетики
Книги, изданные при поддержке РФФИ
Тег "wear rate"
Фотоника #2/2025
В. П. Бирюков, Я. А. Горюнов, А. Н. Миряха
Определение механических и триботехнических характеристик покрытий при лазерной широкополосной наплавке сталей
В работе рассмотрены результаты металлографических и триботехнических испытаний образцов стали 20Х13 и образцов стали 20Х13 с лазерной широкополосной наплавкой порошком 20Х13. Наплавленный слой имел дендритную разноориентированную структуру. Микротвердость покрытия составляла 501–575 HV. Установлено, что интенсивность изнашивания наплавленного покрытия в 3,16 раза ниже, чем основного материала. Интенсивность изнашивания контробразца из закаленной стали 45 была ниже в паре трения с наплавленным образцом по сравнению с основным материалом. Средние коэффициенты трения для наплавленных образцов имели значения 0,043, а материала основы 0,078. Производительность лазерной широкополосной наплавки в 5–7 раз выше, чем при обработке расфокусированным лучом.
Станкоинструмент #2/2020
Ю. РАКУНОВ, В. АБРАМОВ, А. РАКУНОВ
РОЛЬ СКОРОСТИ РЕЗАНИЯ И РАДИУСА ОКРУГЛЕНИЯ РЕЖУЩЕГО КЛИНА В ЭФФЕКТИВНОСТИ ТОНКОЙ МЕХАНИЧЕСКОЙ ОБРАБОТКИ ТРУДНООБРАБАТЫВАЕМЫХ МАТЕРИАЛОВ. Часть 2
10.22184/2499-9407.2020.19.02.76.81 Рассмотрены научно-технические подходы к проблеме определения скорости резания при механической обработке рабочих поверхностей деталей машин и изделий унифицированным инструментом на токарных станках с ЧПУ. Произведено сопоставление оптимальных температур резания, полученных при точении сталей, с температурами их структурно-фазовых α–γ-превращений. Показано, что закон постоянства оптимальной температуры резания обеспечивает максимальную стойкость инструмента, наивысшую точность обработки при оптимальной скорости резания, как для конструкционных, так и труднообрабатываемых материалов.
Станкоинструмент #1/2020
Ю. РАКУНОВ, В. АБРАМОВ, А. РАКУНОВ
РОЛЬ СКОРОСТИ РЕЗАНИЯ И РАДИУСА ОКРУГЛЕНИЯ РЕЖУЩЕГО КЛИНА В ЭФФЕКТИВНОСТИ ТОНКОЙ МЕХАНИЧЕСКОЙ ОБРАБОТКИ ТРУДНООБРАБАТЫВАЕМЫХ МАТЕРИАЛОВ. ЧАСТЬ 1
DOI: 10.22184/2499-9407.2020.18.1.66.72 Рассмотрены научно-технические подходы к проблеме определения скорости резания при механической обработке рабочих поверхностей деталей машин и изделий унифицированным инструментом на токарных станках с ЧПУ. Произведено сопоставление оптимальных температур резания, полученных при точении сталей, с температурами их структурно-фазовых α–γ-превращений. Показано, что закон постоянства оптимальной температуры резания обеспечивает максимальную стойкость инструмента, наивысшую точность обработки при оптимальной скорости резания, как для конструкционных, так и труднообрабатываемых материалов.
Разработка: студия Green Art