sitemap
Наш сайт использует cookies. Продолжая просмотр, вы даёте согласие на обработку персональных данных и соглашаетесь с нашей
Политикой Конфиденциальности
Согласен
главная
eng
Поиск:
на сайте журнала
на всех сайтах РИЦ
Вход
Архив журнала
Журналы
Медиаданные
Редакционная политика
Реклама
Авторам
Контакты
© 2001-2025
РИЦ Техносфера
Все права защищены
Тел. +7 (495) 234-0110
Оферта
R&W
ISSN 1993-7296 (print)
ISSN 2686-844X (online)
Книги по фотонике
Статьи
Фотоника #5/2025
Инновационный партнер форума «Микроэлектроника‑2025» – компания «Лазерный Центр»
Фотоника #2/2025
«СЛС Прайм Технолоджи»: лучший продукт – тот, который мы создаем вместе с нашим клиентом
Новости
//
все новости
26.11.2025
Итоги Российского форума «Микроэлектроника 2025»
07.11.2025
Российские лазеры покоряют Индию
События
//
все события
c 24.03.2026 до 25.03.2026
XXVII Сибирский промышленно-инновационном форум «ПРОМТЕХЭКСПО». г. Омск
Вход:
Ваш e-mail:
Пароль:
- запомнить меня
Регистрация
Забыли пароль?
Архив журнала:
2025
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
Медиаданные:
Учредитель
Издатель
О журнале
Редакционный совет
Распространение
Редакционная политика:
РЕДАКЦИОННАЯ ПОЛИТИКА ЖУРНАЛА "ФОТОНИКА"
Реклама:
В журнале
На сайте
Отдел рекламы
Авторам:
Требования к статьям
Соискателям учёной степени
Контакты:
Распространение
Адрес
Редакция
Журналы:
Электроника НТБ
Наноиндустрия
Первая миля
Фотоника
Аналитика
Станкоинструмент
Книги по фотонике
читать книгу
Скворцов Л.А.
Основы фотототермической радиометрии и лазерной термографии
читать книгу
Урик Винсент Дж.-мл., МакКинни Джейсон Д., Вилльямс Кейт Дж.
Основы микроволновой фотоники
читать книгу
Хименко В.И.
Случайные данные: структура и анализ
Другие серии книг:
Мир фотоники
Библиотека Института стратегий развития
Мир квантовых технологий
Мир математики
Мир физики и техники
Мир биологии и медицины
Мир химии
Мир наук о Земле
Мир материалов и технологий
Мир электроники
Мир программирования
Мир связи
Мир строительства
Мир цифровой обработки
Мир экономики
Мир дизайна
Мир увлечений
Мир робототехники и мехатроники
Для кофейников
Мир радиоэлектроники
Библиотечка «КВАНТ»
Умный дом
Мировые бренды
Вне серий
Библиотека климатехника
Мир транспорта
Мир станкостроения
Мир метрологии
Мир энергетики
Книги, изданные при поддержке РФФИ
Тег "laser welding"
Фотоника #2/2021
Д. Трасковецкая
Конференция IX Конгресса Технологической платформы РФ «ФОТОНИКА»: «Лазерные производственные технологии»
DOI: 10.22184/1993-7296.FRos.2021.15.2.122.129 Представлен краткий обзор научно-технической конференции «Лазерные производственные технологии», которая прошла в рамках IX Конгресса Технологической платформы РФ «ФОТОНИКА». Конгресс сопровождал 15‑ю юбилейную Международную специализированную выставку лазерной, оптической и оптоэлектронной техники «Фотоника. Мир лазеров и оптики‑2021». Развитие лазерных производственных технологий осуществляется комплексно: в процессах актуализации нормативной базы, создания усовершенствованного оборудования, написания программного обеспечения и математических моделей физико-химических процессов, освоения технологий и получения новых материалов.
Фотоника #1/2021
С. В. Курынцев, И. Н. Шиганов
Лазерная сварка разнородных металлов. Обзор. Часть 2
DOI: 10.22184/1993-7296.FRos.2021.15.1.30.44 Во второй части представлено продолжение обзора отечественных и зарубежных статей по теме лазерная сварка разнородных металлов, в частности титана с алюминием, алюминия с медью и других наиболее распространенных пар металлов. На основе анализа научных статей установлено, что при сварке титана и алюминия встык рационально смещать лазерный луч на алюминий (предел прочности 168–180 МПа), тогда как при сварке внахлест рационально воздействовать лазерным лучом со стороны титана. Смещение лазерного луча и режимы сварки существенно влияют на толщину ИМС, которую при сварке встык можно снизить до 2–6 мкм. При сварке алюминия и меди лазерный луч необходимо смещать на алюминий как при сварке внахлест, так и при сварке встык. Основным эксплуатационным свойством соединения алюминия и меди является электропроводность, которая напрямую зависит от толщины и состава ИМС. Также рассмотрены технологии сварки титана и магния, стали и меди и других пар металлов.
Фотоника #6/2020
С. В. Курынцев, И. Н. Шиганов
Лазерная сварка разнородных металлов
DOI: 10.22184/1993-7296.FRos.2020.14.6.492.506 Представлен количественный и качественный анализ мировых тенденций в области лазерной сварки разнородных металлов за 2016–2019 годы. Определено, что лазерная сварка получила наибольшее распространение для соединений стали с алюминием, титана с алюминием, алюминия с медью. Представлен анализ основных техник и способов сварки разнородных металлов, результаты исследования их влияния на металлургию процесса, микроструктуру и механические свойства соединений. Акцент сделан на описании техники и способов лазерной сварки алюминия со сталью.
Фотоника #6/2020
Д. О. Чухланцев, В. П. Умнов, В. В. Мальцев, Д. А. Шипихин
Универсальный высокоавтоматизированный лазерный технологический комплекс на базе многолучевого лазера
DOI: 10.22184/1993-7296.FRos.2020.14.6.482.490 Представлен лазерный комплекс с шестилучевым электроразрядным лазером. Лазерная система разработана в компании «ТермоЛазер» и предназначена для технологических процессов лазерной обработки. Комплекс обладает системой управления мощностью каждого луча и их взаимного расположения в зоне обработки. Это позволяет использовать лазерную систему в широком диапазоне применений с высоким качеством выполнения лазерных операций (для резки, сварки, модификации поверхности деталей, наплавки).
Фотоника #4/2019
А. Г. Маликов, А. М. Оришич
Получение высокопрочных лазерных сварных соединений алюминиевых сплавов авиационного назначения
В работе проведены экспериментальные исследования лазерной сварки алюминиевых сплавов авиационного назначения. Для повышения механических свойств, сварных швов, был применен комплексный подход, включающий лазерную сварку в оптимальном режиме и пост обработку (закалка, промежуточная пластическая деформация, искусственное старение) сваренных швов. Впервые проведено комплексное сравнительное исследование влияния термической обработки на широкий напор параметров сварных швов и основных сплавов марки А5М, АМг6, 1420, 1424 и 1441 и В‑1469. Для всех этапов термообработки определено влияние химического состава сплава, на прочность и микроструктуру сварного шва. В результате выполнения работы разработана комплексная технология создания неразъемных соединений современных высокопрочных, термически упрочняемых алюминиевых сплавов, которая включает лазерную сварки и последующую специальную термическую обработку образцов. Найдены оптимальные режимы лазерной сварки, обеспечивающие получение сварных швов без дефектов в виде открытой пористости, подрезов, трещин в сварном шве и околошовной зоне. Проведена оптимизация постобработки сварных соединений, полученных при оптимальных режимах лазерной сварки, на основе термообработки (закалка + искусственное старение). Показана возможность, изменяя режимы термообработки управлять механическими параметрами создаваемых неразъемных соединений: прочностью и пластичность образцов. Впервые для сварных соединений полученных с помощью лазерной сварки и оптимальной постобработки для алюминиево-литиевых термической обрабатываемых сплавов достигнуты механические характеристики сравнимые со значением для сплава в состоянии поставки. DOI: 10.22184/1993-7296.FRos.2019.13.4.356.366
Фотоника #3/2017
В.П.Бирюков, А.А.Фишков, Д.Ю.Татаркин, Е.В.Хриптович
Влияние лазерного упрочнения круглым, профилированным и колеблющимся лучом на повышение ресурса работы деталей машин
Разработана технология лазерного упрочнения металлических деталей. Ширина зоны упрочнения 15–50 мм за один проход позволяет обрабатывать посадочные места шеек валов различных механизмов и машин под подшипники качения и скольжения. Кроме того, технология может быть использована для упрочнения гибочных и других штампов при глубине упрочненного слоя 2,5 мм. DOI: 10.22184/1993-7296.2017.63.3.28.34
Станкоинструмент #2/2016
А. ГРЕЗЕВ, В. ГРЕЗЕВ, А. СУХОВ, С. ШАНЧУРОВ, М. МАЛЫШ
Разработка лазерных технологий для нефтегазовой отрасли
Проведены исследования по разработке технологий лазерной сварки, наплавки и резки для нефтегазовой отрасли. Разработана технология комбинированной лазерной сварки несколькими лазерными лучами, что позволяет регулировать объем сварочной ванны. Предлагается вместо дуговой сварки стыков трубопровода в полевых условиях использовать разработанный автоматизированный мобильный комплекс для лазерной сварки.
Фотоника #4/2015
Т.Баутц, М.Когель-Холлакер
Глубина канала проплавления – всего лишь дистанция повышения качества лазерной сварки с использованием датчика глубины проплавления
Датчик для измерения глубины проплавления непосредственно в процессе сварки, разработанный компанией Precitec, позволяет повысить качество сварного шва. В статье обсуждается процесс лазерной сварки, особенности формирования канала проплавления, сварного шва, а также о глубине канала.
Фотоника #4/2013
Г.Белерини, Ф.Брианд, Ф.Лефебр, K.Чоуф, М.Степанова
Сварка твердотельными и СО2-лазерами листовой оцинкованной стали и нестандартных заготовок в среде аргона и в смесях на его основе
Газ в операциях обработки играет роль защиты поверхности от нежелательного загрязнения и шва от окисления. Статья описывает преимущества использования аргона как защитного газа, способного обеспечить высокие контролируемые динамические параметры сварочного процесса для сварки СО2- и твердотельными лазерами.
Фотоника #5/2012
А.Григорьянц, А.Грезев, В.Грезев
Лазерная сварка сталей больших толщин с применением мощных оптоволоконных и СО2-лазеров
Приведены экспериментальные данные по физике взаимодействия лазерного излучения с плазмой, сопровождающего процесс лазерной сварки. Рассмотрены СО2- и оптоволоконные лазеры. Показаны условия, при которых процесс сварки протекает наиболее эффективно, также влияние интенсивности лазерного излучения, скорости сварки, марки металла на эффективность процесса. Приведены конкретные примеры характера проплавления металла и свойства сварных соединений.
1
2
→
Разработка: студия
Green Art