

Указатель статей, опубликованных в 2021 году

Волоконно-оптические устройства	Лазерная медицина
и технологии	Н.К.Жижин, Д.А.Иванов, М.А.Иванов,
О.В.Бурдышева, Е.С.Шолгин, А.Ю.Максимов	Ю. Ю. Колбас, Е. В. Кузнецов, Н. А. Кузина,
Оптимизация конструкции	Е. А. Шибеко
экспериментального отражательного	Оптимизация параметров лазерного излучения
элемента для амплитудного волоконно-	при хирургическом лечении больных с
оптического датчика вибрации	патологией аноректальной зоны № 8, с. 676
отражательного типа	
	Лазеры и лазерные системы
Деловые люди	3.С.Гайссер (Павлова), А.В.Прилуцкий,
Заседание Экспертного совета	А.В.Фёдоров
по фотонике	Источник питания лазеров с диодной
	накачкой для бортового применения № 1, с. 46
Микро3D-печать крошечных	
разъемов: аддитивное производство	Р. Р. Кашина, Ю. А. Конин, Ю. А. Великоцкий,
в микромасштабах предлагает альтернативу	А.Р.Рахматуллина, А.Ю.Петухова,
микролитью и микрофрезеровке № 5, с. 372	В. А. Щербакова, В. Б. Ромашова
	Влияние геометрии оптического волокна
С.В.Попов	на выходное лазерное излучение № 2, с. 144
Наука – не всегда просто, но доступно № 7, с. 550	
	О.А.Крючина, А.Б.Люхтер, В.И.Криворотов,
Инновации в производстве	И.Э.Садовников, П.В.Безносов, А.В.Луконин
АО «Лазерные системы».	Комплексная оценка эксплуатационной
Высокотехнологичные решения,	надежности модульной кабины с активной
реализованные в промышленности № 5, с. 360	защитой от воздействия лазерного
	облучения
Квантовые технологии	
А.И.Аржанов, А.О.Савостьянов, К.А.Магарян,	В.П.Дураев, С.А.Воронченко, И.С.Молодцов
К. Р. Каримуллин, А. В. Наумов	Перестраиваемый одночастотный
Фотоника полупроводниковых квантовых	полупроводниковый лазерный модуль
точек: фундаментальные аспекты № 8, с. 622	на базе двухпроходного усилителя на длину
	волны 550 нм № 5, с. 410
Конференции, выставки, семинары	
Выставка «Фотоника. Мир лазеров	Г.И.Долгих, С.Г.Долгих, В.В.Овчаренко,
и оптики» отмечает 15-летие № 1, с. 8	В. А. Чупин, В. А. Швец, С. В. Яковенко
	Особенности применения лазерных
Д. Трасковецкая	деформографов классического и маятникого
Конференция IX Конгресса Технологической	типов
платформы РФ «ФОТОНИКА»: «Лазерные	
производственные технологии» № 2, с. 122	Г.И. Долгих, С.С. Будрин, С.Г. Долгих, В.А. Чупин
	Пеленгование геосферных возмущений
Д. В. Трасковецкая	лазерными деформографами № 8, с. 656
Конференция IX Конгресса Технологической	
платформы РФ «ФОТОНИКА»: «Оптические	МЕТРОЛОГИЯ И МЕТРОЛОГИЧЕСКОЕ
материалы и компоненты» № 3, с. 202	ОБОРУДОВАНИЕ
Промышленная политика делает акцент на	А.Б.Люхтер, В.И.Криворотов, К.В.Скворцов
регионы № 5, с. 362	Двухуровневая методика оценки
	эксплуатационной надежности модульной
Н.Л.Истомина	кабины с активной защитой (МКАЗ)
HOLOEXPO 2021	от лазерного воздействия № 6, с. 454

УКАЗАТЕЛЬ СТАТЕЙ, ОПУБЛИКОВАННЫХ В 2021 ГОДУ

Нанофотоника	А.В.Медведев, А.В.Гринкевич, С.Н.Князева
А. И. Терехов	Особенности приборов солнечно-слепого
Библио- и патентометрический	УФ-диапазона спектра № 6, с. 502
анализ развития нанофотоники:	
2000-2020 годы	Оптические измерения
	Е.В.Кузнецов, П.Ю.Лобанов,
Новости	И. С. Мануйлович, М. Н. Мешков,
СВЧ интегральная оптика для оптической	О. Е. Сидорюк, Л. А. Скворцов
и квантовой информатики № 1, с. 12	Неразрушающий контроль изделий из
	пластика посредством активной термографии
NESSY. Оборудование Бюлер Leybold Optics	при импульсном лазерном нагреве № 5, с. 428
для EUV-технологии № 1, с. 14	
	Т.В.Гордейчук, М.В.Казачек
Многофункциональность и компактность	Яркая сонолюминесценция металлов
оптических сенсоров: система HELIOS	в концентрированных водных растворах
компании Бюлер Leybold Optics № 1, с. 108	хлоридов Ca и Na
Промышленная микро-3D-печать:	Оптические устройства и системы
3D-принтеры ВМГ	С.Б.Одиноков, И.К.Цыганов, В.Е.Талалаев,
	В.В.Колючкин, Н.В.Пирютин
Аддитивное производство на станках DMG	Дифракционный компаратор защитных
МОRI Россия № 3, с. 196	голограмм на документах. Модернизация
	и опытная эксплуатация № 1, с. 86
Преимущества лазерной маркировки	
для прослеживаемости	В. С. Захариков, Д. В. Клусов, А. В. Гусаченко,
	Б.Н.Новгородов, Г.Н.Попов
Н.Л.Истомина	Система определения направления взгляда
Заменят ли квантовые компьютеры	человека с калибровкой по одной точке на
классические и есть ли альтернатива	экране № 1, с. 100
параллельным вычислениям? № 4, с. 348	
	И.П.Шишкин, А.П.Шкадаревич
Оптико-электронные системы	Термостабилизированные тепловизионные
и комплексы	объективы № 2, с. 154
Ю. Н. Снытко	
Исследование оптико-абсорбционного	И.П.Шишкин, А.П.Шкадаревич
газоанализатора контроля концентрации	Объективы с дифракционноограниченным
фреонов в воздухе помещений	разрешением № 3, с. 238
промышленных объектов № 2, с. 162	
	В. М. Поляков, А. С. Бобе, С. И. Томашевич,
Х. С. М. Р. Хуссейн, В. А. Куклин,	Д.С.Денк, Д.Н.Калитеевский,
М. Ш. Салахутдинов, И. И. Нуреев	И.Н.Калитеевский, А.Л.Павлова
Определение плотности наноразмерных	Спектрометры видимого и ближнего
частиц методом седиментации № 2, с. 176	инфракрасного диапазона для научного
	и промышленного применения № 4, с. 316
А.В.Медведев, А.В.Гринкевич, С.Н.Князева	
Очки ночного видения и особенности	П. С. Завьялов, Е. В. Власов, А. В. Солдатенко,
их применения	М. А. Завьялова, В. С. Бартош
	Разработка оптических схем формирования
И.В.Знаменский, Е.О.Зотьев, С.Ю.Юдин	комфортной визуальной обстановки
Сравнительный анализ пороговой	в области тренажеростроения № 6, с. 526
чувствительности ИК-систем в различных	

спектральных диапазонах № 6, с. 484

УКАЗАТЕЛЬ СТАТЕЙ, ОПУБЛИКОВАННЫХ В 2021 ГОДУ

М. А. Завьялова, П. С. Завьялов, М. В. Савченко Экспериментальные исследования волоконного конфокального датчика на основе метода хроматического	А.Б.Устинов, И.Ю.Таценко, А.А.Никитин, А.В.Кондрашов, А.В.Шамрай, А.В.Иванов Принципы построения оптоэлектронных СВЧ-генераторов. Часть II
кодирования № 7, с. 598 Оптоэлектронные приборы и устройства Н.А. Кульчицкий, А.В. Наумов, В.В. Старцев, М.А. Демьяненко Детектирование в терагерцевом диапазоне.	П.О.Якушенков, Е.А.Чешев, И.М.Тупицын Исследование синхронизации мод лазера с диодной накачкой для генератора несущей в фотонных схемах
Часть 1 № 1, с. 52	Технологии
, , , , , , , , , , , , , , , , , , , ,	И ТЕХНОЛОГИЧЕСКОЕ ОБОРУДОВАНИЕ
Р. З. Хафизов, В. В. Старцев, В. Ю. Москвичев	В.В.Лапшин, Е.М.Захаревич, М.С.Кузнецов,
Быстродействующие болометрические	К.С.Зараменских, А.В.Осипов
матричные детекторы № 5, с. 396	Технология обработки оптических деталей из кристаллов КРС-5 методом алмазного
С.К.Моршнев, Н.И.Старостин,	точения и фрезерования № 1, с. 18
Я.В.Пржиялковский, А.И.Сазонов	
Нелинейная зависимость константы Верде	С.В.Курынцев, И.Н.Шиганов
от концентрации парамагнитных примесей в сердцевине волоконного	Лазерная сварка разнородных металлов. Обзор. Часть 2 № 1, с. 30
световода № 7, с. 578	D. El Company
LI A KVIII IIIIIVIAA A P. Haviaaa P. P. Ctaruor	В.П.Бирюков Повышение износостойкости деталей
Н. А. Кульчицкий, А. В. Наумов, В. В. Старцев, М. А. Демьяненко	повышение износостоикости деталеи и почвообрабатывающих орудий
Детектирование в терагерцевом диапазоне.	и почьооораоатывающих орудии в сельхозмашиностроении лазерной
Часть II	наплавкой
Радиофотоника	Д.В.Волосевич, С.А.Шальнова,
В. М. Петров, А. В. Шамрай, И. В. Ильичев,	А. М. Вильданов, И. С. Магидов,
П. М. Агрузов, В. В. Лебедев	К.В.Михайловский, О.Г.Климова-Корсмик
Широкополосный квантовый генератор	Прямое лазерное выращивание
шума на основе управляемого интегрально-	металлокерамических сплавов на основе
оптического интерферометра № 1, с. 70	титана
А. С. Борейшо, М. А. Коняев, А. А. Ким,	А. М. Григорьев
А. С. Михайленко	Воздействие на прозрачный материал
Перспективы оптико-радиочастотных	с запрещенной зоной лазерного излучения
систем дистанционного зондирования атмосферы № 1, с. 76	с длиной волны из спектральной области края поглощения № 4, с. 308
А.Б.Устинов, И.Ю.Таценко, А.А.Никитин,	А. Д. Еремеев, Д. В. Волосевич
А.В.Кондрашов, А.В.Шамрай, А.В.Иванов	Исследование формирования структуры
Принципы построения оптоэлектронных	наплавочных валиков при лазерном
СВЧ генераторов № 3, с. 228	выращивании из порошка сплава AlSi10Mg
А. А. Ким, А. Д. Губарев	
Современная радиофотоника в России:	М.В.Рашковец, Н.Г.Кислов, А.А.Никулина,
отчет с научно-практической конференции	О. Г. Климова-Корсмик
«Радиофотоника» в рамках Конгресса	Влияние термической обработки на
российской технологической платформы	структурно-фазовое состояние и ударную
«Фотоника» № 4, с. 324	вязкость никелевого сплава Inconel 718 при
	AUTHORING HOW THOUSEOUTHEE Nº / (° Nº X

ИЗДАТЕЛЬСТВО «ТЕХНОСФЕРА» ПРЕДСТАВЛЯЕТ КНИГИ:

Гибсон Я., Розен Д., Стакер Б.

ТЕХНОЛОГИИ АДДИТИВНОГО ПРОИЗВОДСТВА

Трехмерная печать, быстрое прототипирование и прямое цифровое производство

M.: ΤΕΧΗΟCΦΕΡΑ, 2020. - 648 c. ISBN 978-5-94836-447-6

Книга посвящена новейшим технологиям, которые дают возможность на основе данных о виртуальных моделях твердых тел изготавливать физические модели в результате быстрых и легких производственных процессов. Авторы книги – признанные специалисты в области аддитивных технологий, имеющие многолетний опыт работы и исследований. Первое издание задумывалось как базовый учебник, объединивший все литературные источники, посвященные целям и задачам аддитивного производства (АП). Второе издание существенно

переработано и дополнено, новая информация включена в дополнительные разделы и главы. Разработчики АП и представители промышленности найдут полезные сведения в этой книге, поскольку она поможет понять состояние дел в отрасли и перспективы дальнейших исследований. Издание предназначено также для преподавателей, студентов и аспирантов, изучающих аддитивное производство, может быть использовано в качестве автономного курса или как модуль в большой программе по технологии производства.

цена 2000 руб

СПРАВОЧНИК ПО ЛАЗЕРНОЙ СВАРКЕ

Редактор оригинального издания С. Катаяма

М.: ТЕХНОСФЕРА, 2015. - 704 с. + 32 с. цв. вклейки. ISBN 978-5-94836-420-9

Среди технологий, предназначенных для обработки материалов лазером, особо выделяется лазерная сварка, включившая в себя последние достижения в разработке лазерных устройств. Для ее правильного применения и использования требуется ясное понимание физических механизмов и явлений, сопровождающих лазерную сварку. Поэтому в книге рассмотрены разнообразные лазерные или гибридные процессы сварки, сварка различных видов материалов, приведено описание металлургических, химических и механических аспектов сварки. Справочник разделен на четыре части. В разделе I рассмотрены базовые принципы физических процессов сварки и раскрыты причины появления

дефектов. Раздел II посвящен конкретным технологиям, рассмотрена лазерная сварка различных материалов. В разделе III представлены методы численного моделирования процесса лазерной сварки, описана процедура калибровки инструментов в роботизированной сварке. В разделе IV рассмотрены конкретные значения рабочих параметров и условий сварки в промышленных применениях. Книга адресована студентам, инженерам, ученым, преподавателям и станет важной и полезной для всех, кто интересуется лазерной сваркой – от новичков до специалистов и экспертов.