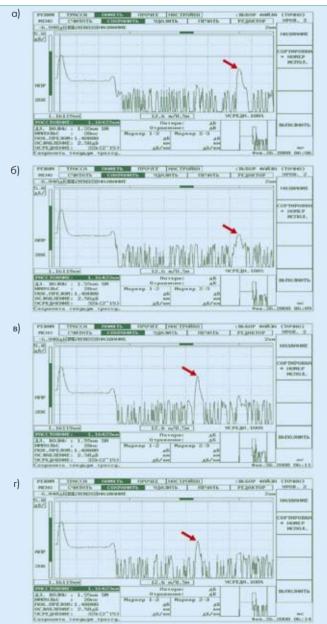

СПЕКТРАЛЬНО-ВРЕМЕННОЕ ДЕТЕКТИРОВАНИЕ СИГНАЛОВ ВБР

С ПОМОЩЬЮ МЕТОДА ОПТИЧЕСКОЙ ВРЕМЕННОЙ РЕФЛЕКТОМЕТРИИ

а основе предложенного в работе [1] рефлектометрического подхода к опросу сигналов от волоконных брэгговских решеток (ВБР) рассмотрен и исследован (теоретически и экспериментально) комбинированный метод регистрации и разделения сигналов ВБР-датчиков, совмещающий принципы спектрального и временного разделения измерительных каналов.

В основу метода положена спектральная фильтрация зондирующих импульсов (генерируемых оптическим временным рефлектометром — OBP) с помощью полосового фильтра, построенного на базе перестраиваемой ВБР и волоконного циркулятора (рис.1а).

Опрашиваемые ВБР в данном случае записываются на волоконную линию группами, чтобы обеспечить одинаковую резонансную длину волны для одной группы и разные резонансные длины волн для разных групп. При регистрации сигналов от опрашиваемых ВБР осуществляется фильтрация


a) Схема измерительной системы на волоконных брэгговских решетках с комбинированным спектрально-временным разделением каналов на основе оптической временной рефлектометрии; б) Спектральная фильтрация зондирующих импульсов ОВР при регистрации сигналов одной из групп опрашиваемых ВБР

АВТОРЫ

Ю.Кульчин 1 , О.Витрик 1 , А.Дышлюк 1 А.Шалагин 2 , С.Бабин 2 , И.Шелемба 2

¹ Институт автоматики и процессов управления ДВО РАН

зондирующих импульсов последовательно на длинах волн, соответствующих резонансным длинам волн каждой из групп (рис.1б). Таким образом, выделяются сигналы от всех брэгговских решеток какой-то группы, которые затем разделяются по времени рефлектометрическим методом [1].

ис.2 Рефлектограмма волоконной линии с двумя ВБР на λ_1 =1547,6 и λ_2 =1555,9 нм при фильтрации зондирующего импульса на λ_1 (а, б) и λ_2 (в, г): а, в) при отсутствии какого-то воздействия на опрашиваемую ВБР; б, г) при оказании деформационного воздействия на опрашиваемую ВБР

На рис.2 приведены результаты экспериментального исследования предлагаемого подхода на примере опроса ВБР с резонансными длинами волн λ_1 =1547,6 и λ_2 =1555,9 нм. Решетки опрашивались рефлектометрическим методом при фильтрации зондирующего импульса на λ_1 (рис.2а,б) и λ_2 (рис.2в,г). Как видно из рис.2, на полученных рефлектограммах присутствуют пики отражения от первой и второй ВБР при настройке на соответствующую длину волны. При этом амплитуда пика пропорциональна резонансной длине волны, опрашиваемой ВБР [1]. Чувствительность разработанного метода при регистрации относительного удлинения ВБР составила $0,4\cdot10^{-4}$.

Работа поддержана грантами РФФИ (06-02-96002), ДВО и СО РАН (06-II-CO-02-005 / №3.8), INTAS 04-78-7227. Результаты работы были доложены на "II Российском семинаре по волоконным лазерам" — Саратов, 2008.

ЛИТЕРАТУРА

1. **Yu. Kulchin et al.** Application of Optical Time-Domain Reflectometry for the Interrogation of Fiber Bragg Sensors. – Laser Physics, 2007, v.17, No.11, p.1335.

² Институт автоматики и электрометрии СО РАН